РЕЗОНАНСНЫЕ ЭФФЕКТЫ В ЭКСПЕРИМЕНТАХ С ГОРИЗОНТАЛЬНЫМИ КРУТИЛЬНЫМИ МАЯТНИКАМИ

С.A. Шопин, sshopin@mail.ru

ФБГОУ ВО Тульский государственный университет, г.Тула, Россия
Рассмотрена конструкция приборов - широкополосных градиентометров, используемых для систематических гравиметрических наблюдений в Тульском государственном университете. Приведены примеры специфических высокочастотных сигналов большой амплитуды, регистрировавшихся в прошлые годы в сентябре-октябре. Представлены характерные спектрограммы таких сигналов. Регистрация сигналов происходит из-за резонансного характера амплитудно-частотной характеристики крутильных систем.

RESONANCE EFFECTS IN HORIZONTAL TORSION PENDULUM EXPERIMENTS

S.A. Shopin, sshopin@mail.ru

Tula State University, Tula, Russia
It is considered construction of instruments (wideband gradiometers), used for systematic gravity monitoring in Tula State University. Several examples of specific high-frequency signals, registered in Septembers and Octobers during last years are shown. Typical spectrograms of such signals are presented. Registration of signals results from the resonant behavior of the gainfrequency characteristic of the torsional systems.

В Тульском государственном университете с конца 80-х гг. ХХв. проводятся мониторинговые наблюдения с использованием специальных гравиметрических приборов градиентометрического типа, основанных на использовании асимметричного горизонтального крутильного маятника [1,2]. В настоящее время приборы используются как один из компонентов системы наземно-космического мониторинга предвестников землетрясений [3].

Основным элементом конструкции используемых приборов - широкополосных градиентометров (приборов ШГМ) - являются крутильные маятники типа весов Кулона или Кавендиша с асимметричной системой грузов (рис.1a). Крутильная система представляет собой коромысло 2 , подвешенное за центр тяжести на нити 1 . На концах коромысла закреплены грузы 3 и 4. Элементы крутильных систем выполнены из немагнитных материалов. Измерения проводятся на неподвижном основании (точка подвеса нити О неподвижна).

Используемая крутильная система является асимметричной: грузы 3 и 4 имеют различную конструкцию и массо-инерционные характеристики. Конструкция груза 3 набирается из металлических пластин.

Измеряемой величиной является угол закручивания нити 1 крутильной системы (угол поворота коромысла 2). величина которого для находящихся в эксплуатации приборов находится в диапазоне $\pm 20^{\circ}$.

Каждый прибор ШГМ имеет несколько измерительных каналов (несколько крутильных систем), размещенных внутри заземленного металлического корпуса-экрана (рис. 1б).

Коромысла с грузами находятся внутри рабочего объема корпуса 1 , выполненного из толстой стали (толщина $\sim 10-20$ мм). Нити подвеса крутильных систем располагаются внутри штанг 5. Крепление нитей подвеса и установка нулевого положения крутильных систем осуществляется с помощью узла 2.

Каждая крутильная система снабжена оптоэлектронной системой, обеспечивающей измерение угла поворота коромысла и передачу информации в персональный компьютер. Элементы датчиков углов поворота располагаются в опорах штанг 6 .

Принцип действия измерительной системы угла поворота показан на рис.1в. Измерение угла поворота угла осуществляется путем измерения освещенности фотодиода 7

Восьмые научные чтения памяти Ю.П. Булашевича, 2015 г.
отраженным от зеркальца 5 светом от источника света 6. Освещенность изменяется в зависимости от угла поворота зеркальца, жестко связанного с коромыслом крутильной системы. Такая схема измерения угла при определенных параметрах и расположении источника света и фотодиода оказывается нечувствительной к отклонениям нити подвеса от вертикали.

В качестве источников света 6 используются лазерные диоды или светодиоды с обратной связью по яркости.

Рис. 1. а) Крутильная система прибора ШГМ: О - точка подвеса крутильной системы;
1 - нить подвеса; 2 - коромысло; 3 - груз сложной формы; 4 - груз-противовес; б)
Конструкция корпуса-экрана прибора ШГМ-2: 1 - рабочий объем корпуса; 2 - узел крепления и регулировки крутильной системы; 3 - основание прибора; 4 - крышка рабочего монтажного окна; 5 - штанга; 6 - опора штанги; в) Принцип измерения угла закручивания нити: 1 - нить подвеса; 2 - коромысло; 3 - груз сложной формы; 4 - груз-противовес; 5 зеркальце; 6 - светодиод; 7 - фотодиод
Крутильные системы приборов являются слабо демпфированными, их резонансные частоты находятся в районе единиц миллигерц.

В настоящее время в эксплуатации находятся три прибора: ШГМ-2, ШГМ-3 и ШГМ-4 (рис.2). Цифра в названии приборов обозначает число крутильных систем. Приборы ШГМ работают в круглосуточном режиме и их показания сохраняются в специальной базе данных с частотой дискретизации до 1 Гц (различна для разных приборов). Лаборатория мониторинга является отдельным изолированным помещением, измерения ведутся без участия оператора.

В работах $[4,5]$ на экспериментальных данных показана чувствительность приборов к микросейсмике от удаленных сильных землетрясений, а также к быстрым вариациям атмосферного давления в пункте наблюдений. В работах [1,2,4,5] приведены примеры регистрируемых сигналов и рассмотрена их структура. В настоящей работе рассматриваются специфические ВЧ сигналы, зарегистрированные приборами.

8 декабря 2009г. начал регистрироваться ВЧ сигнал беспрецедентной мощности, наблюдавшийся вплоть до 15 декабря (рис.3,4). За время наблюдений с использованием систем ШГМ-3 и ШГМ-4 (с 2006г.) сигнал не имел аналогов на момент своего возникновения, значительно превосходя по амплитуде аномалии на любом временном интервале до своего появления (в течение 2006-2010гг.), поэтому данный сигнал был назван мега-аномалией.

Спектральный анализ (рис.5) показал, что мега-аномалия представляет собой широкополосный сигнал, имеющий похожую спектральную структуру на всех каналах приборов, в тоже время каждый из каналов выделяет в спектре составляющие, расположенные вблизи собственных резонансных частот (частот собственных колебаний). Спектральный состав мега-аномалии на интервале 13.12.2009-15.12.2009 несколько сдвинут в ВЧ область Кроме собственной частоты колебаний каждого канала спектр мега-аномалии

Восьмые научные чтения памяти Ю.П. Булашевича, 2015 г.
содержит также ряд выраженных составляющих на других частотах в диапазоне $10^{-2}-10^{-1}$ Гц - гармоник основной частоты $\sim 10^{-2}$ Гц. В указанном частотном диапазоне лежат и собственные частоты колебаний крутильных систем, т.е. регистрация аномалий связана с резонансными эффектами.

a)
б)

Рис. 2. а) Фотография лаборатории, б) корпус-экран прибора ШГМ-3: 1 - рабочий объем, 2 - устройство крепления и регулировки крутильной системы; 3 - крышка корпуса; 4 - основание прибора; 5 - крышка рабочего монтажного окна; 6 - штанга; 7 - опора штанги:

Рис. 3 - Данные ШГМ-3 за период 04.12.2009-15.12.2009: 1 - ВЧ сигналы

Рис. 4 - Мега-аномалия на годовом графике ШГМ-3 за 2009г., канал 1
Спектральный анализ сигналов за 2006-2014гг. позволил выявить сигналы, имеющие линейчатый спектр - сигналы-аналоги частотной структуры мега-аномалии. Аналоги были найдены на следующих временных интервалах:

- в 2006г.: 18.10-19.10;
- в 2007г.: 19.09; 14.10-19.10; 29.10;
- в 2008г.: 16.09-20.09; 28.09-29.09; 29.10.
- в 2013г.: 27.09-30.09;

Восьмые научные чтения памяти Ю.П. Булашевича, 2015 г.

- в 2014г.: 21.10-22.10.

Пример спектрограммы сигнала-аналога показан на рис. 6

Рис. 6 - Спектрограмма канала 1 прибора ШГМ-3 на интервале 19.09.2007-19.10.2007г.
Мега-аномалия декабря 2009г. имеет аналоги по частотной структуре, хотя по своей интенсивности она аналогов не имеет. Несомненно, значительный интерес вызывает сопоставление временных интервалов аномалий с результатами измерений с помощью современных высокочувствительных гравиметров, выполняемых другими исследовательскими группами.

В 2013г. измерения с помощью приборов ШГМ проводились уже в сопровождении специального компьютеризированного барографа, разработанного автором статьи, что позволило изучить спектральный состав инфранизкочастотных вариаций атмосферного давления в период наблюдения аномалии и позволило проверить гипотезу о возможном метеорологическом генезисе наблюдавшейся аномалии. На рис.7-9 показаны аномалия 2013г. и результаты цифровой фильтрации данных барографа и ШГМ-3. Поведение отфильтрованных составляющих данных ШГМ-3 и барографа отличается, что позволяет утверждать, учитывая очень большую амплитуду аномалии, что аномалия 2013г. не связана с акустическими процессами в пункте наблюдений. Аналогии между аномалией 2013г. и показанными ранее осенними аномалиями, выявленными на временном интервале 20062014гг., позволяют предположить, что все указанные аномалии не связаны с акустическими

Восьмые научные чтения памяти Ю.П. Булашевича, 2015 г.

процессами, т.е. имеют неметеорологическое происхождение. Данное утверждение будет проверяться с помощью барографа с более высоким разрешением.

Рис. 7 - Данные ШГМ-3 за 01.01.2013-31.12.2013г.: 1 - аномалия

Рис. 8 - Данные ШГМ-3 за 25.09.2013-30.09.2013г.: 1 - аномалия

Рис. 9 - Аномалия в данных ШГМ-3 и данные барографа за период 25.09.201330.09.2013г.: 1,2,3 - отфильтрованные сигналы ШГМ-3, 4 - отфильтрованные данные барографа.
Интересно отметить, что все найденные интервалы - аналоги привязаны к сентябрюоктябрю, что позволяет предположить, что появление подобных сигналов связано с прохождением планетой при движении по орбите определенной области космического пространства, в которой она подвергается какому-то специфическому воздействию.

Список литературы

1. Мартыынов O.B. Концепция прогноза природных катастроф и практические результаты, полученные на основе аппарата нелинейной физики, математики и данных системы //Нелинейный мир.- 2008.- № 10.- Т. 6.- С. 579-615
2. Шопин С.А. О работах О.В. Мартынова по прогнозу землетрясений / Система «Планета Земля»: 200 лет Священному союзу.- М.: ЛЕНАНД, 2015.- 656с.- С.102-120
3. Doda L.N., Dushin V.R., Natyaganov V.L., Smirnov N.N., Stepanov I.V. Earthquakes forecasts following space- and ground-based monitoring // Acta Astronautica.- 2011.- V.69.- P.18-23
4. Шопин С.А. Микросейсмические и барические эффекты при измерениях с помощью горизонтальных крутильных весов / Система «Планета Земля»: XX лет Семинару «Система "Планета Земля"».- М.: ЛЕНАНД, 2014.- 608с.- С.343-355
5. Шопин С.A. Влияние микросейсм и вариаций атмосферного давления на измерительные системы на основе горизонтальных крутильных весов // Известия ТулГУ. Естественные науки. Вып. 1. Ч.1.- Тула, изд-во ТулГУ, 2014.- С. 249-263.
